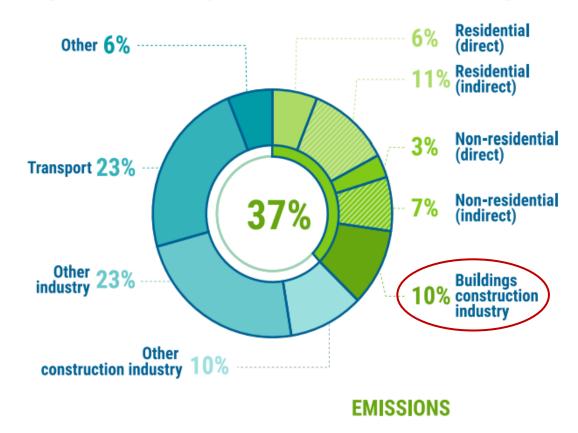
La réduction du carbone intrinsèque dans les bâtiments : une priorité

29 mai 2024 Congrès annuel du CIFQ

Caroline Frenette, ing., Ph. D.

Gestionnaire senior

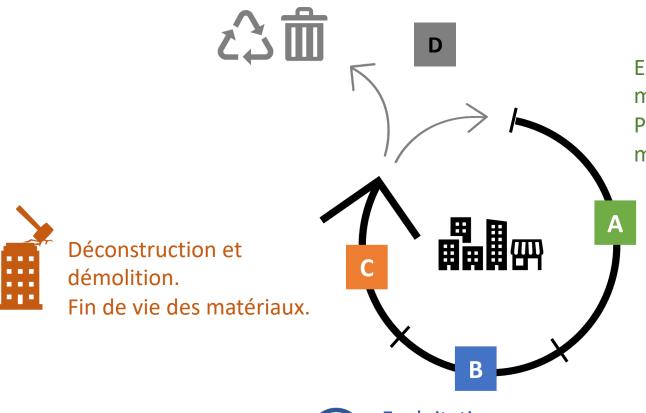


RÉPARTITION DES ÉMISSIONS DE CO₂ MONDIALES

Figure 14. Buildings and construction's share of global energy-related CO₂ emissions, 2020

Notes:

"Buildings construction industry" is the portion (estimated) of overall industry devoted to manufacturing building construction materials such as steel, cement and glass. Indirect emissions are emissions from power generation for electricity and commercial heat.


Source:

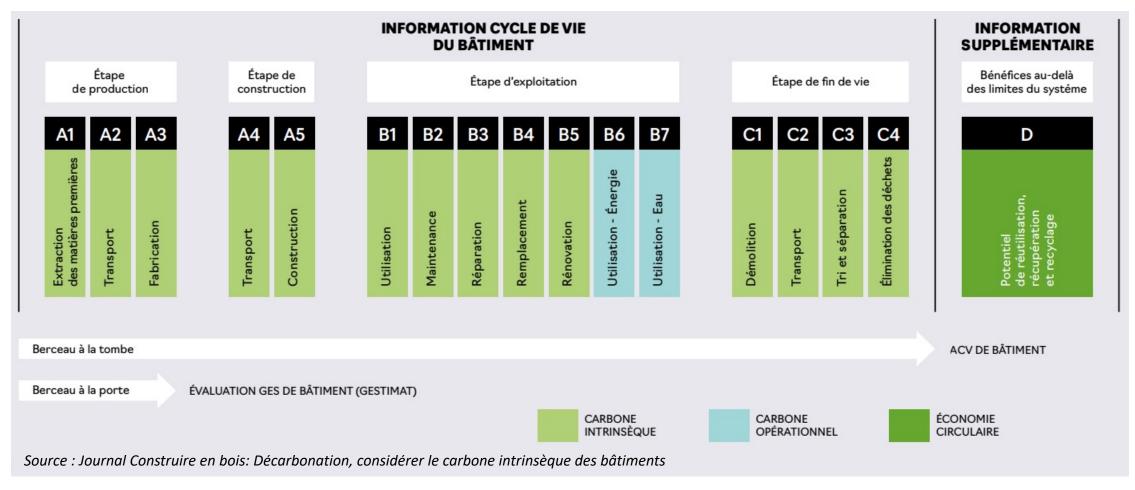
IEA 2021a. All rights reserved. Adapted from "Tracking Clean Energy Progress"

ANALYSE DU CYCLE DE VIE (ACV)

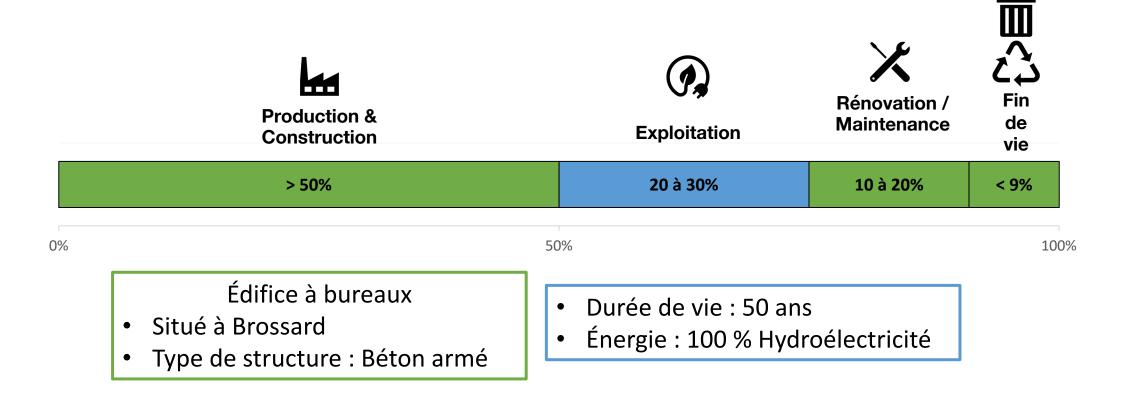
Quelles sont les émissions de GES d'un bâtiment?

Extraction des matières premières. Production des matériaux.

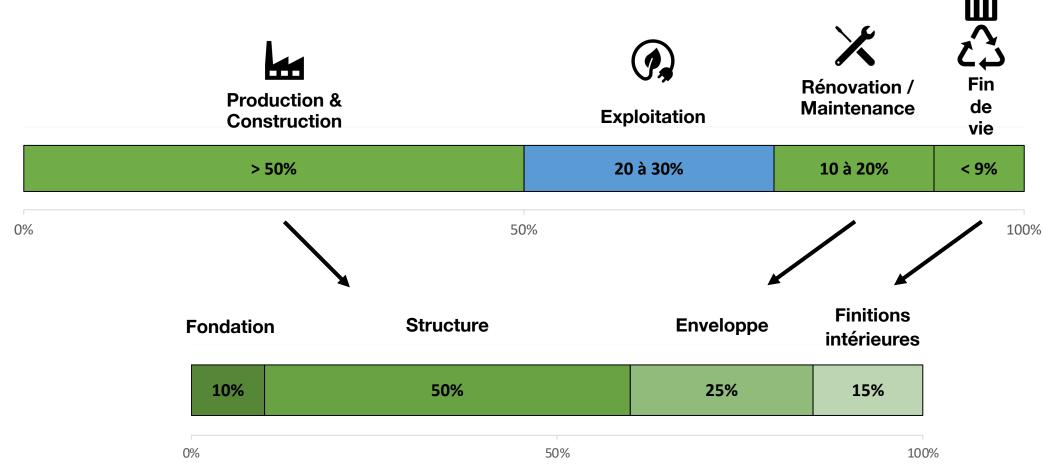
Transport jusqu'au site de construction.
Construction du bâtiment.



Phases du cycle de vie d'un bâtiment

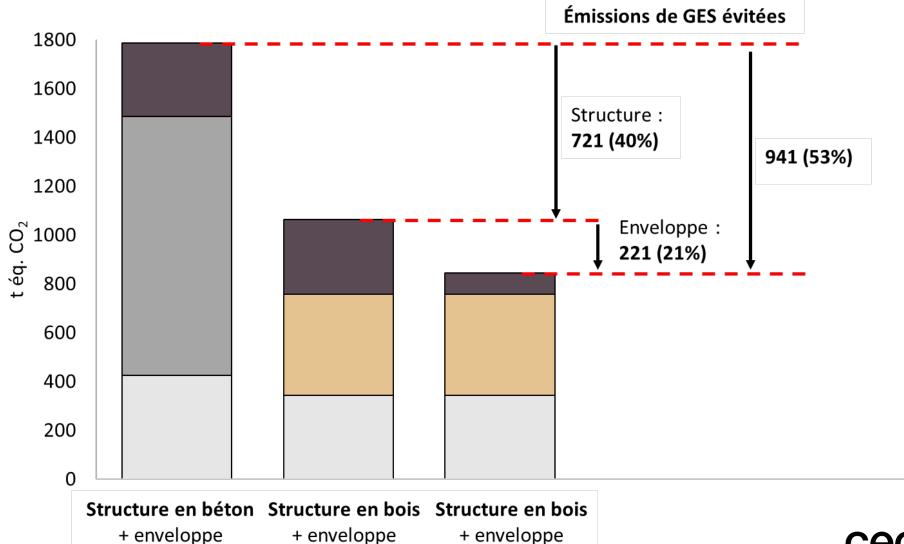

Adapté de EN15978

ACV DES BÂTIMENTS AU QUÉBEC


Quelles sont les émissions de GES d'un bâtiment au Québec?

ACV DES BÂTIMENTS AU QUÉBEC

Quelles sont les émissions de GES d'un bâtiment au Québec?


ÉTUDE D'UN BÂTIMENT DE 6 ÉTAGES

traditionnelle

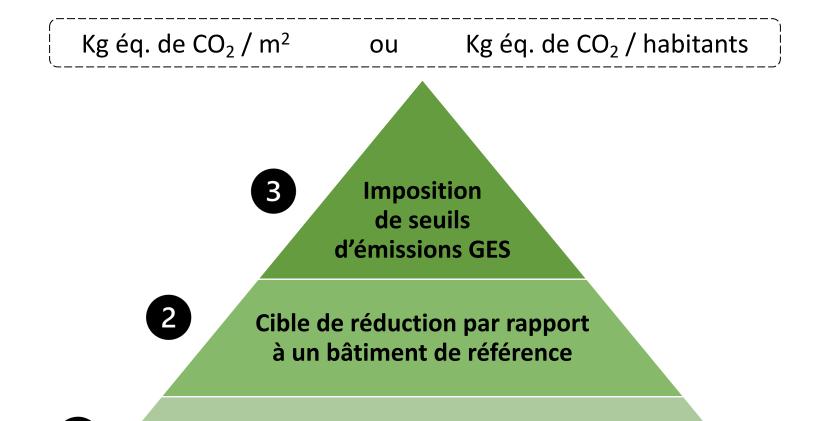
Collaboration avec Écohabitation

empreinte carbone

biosourcée

traditionnelle

DÉCLARATION DE CHAILLOT signée par 70 pays (mars 2024)


- Mettre en œuvre des **feuilles de route**, des **cadres réglementaires** et des **codes de la construction** et de l'énergie contraignants afin de tendre vers des bâtiments plus neutres en carbone ;
- Mettre en œuvre un cadre financier adapté avec des incitations financières, fiscales et des outils réglementaires afin d'augmenter la part des bâtiments résilients, quasi nuls en émissions de gaz à effets de serre, et accessibles ;
- Promouvoir l'adoption de labels, de standards et de certifications ;
- Montrer l'exemple en adoptant des politiques ambitieuses en matière de marchés publics ;
- Promouvoir la production, le développement et l'utilisation de matériaux de construction faibles en carbone, durables et à coûts limités ;
- Promouvoir les chaînes de valeurs collaboratives et la recherche & développement de solutions innovantes ;
- Améliorer les compétences en renforçant notamment le savoir-faire local prenant en compte les stratégies d'atténuation et d'adaptation ;
- Développer une gouvernance à plusieurs niveaux, une coordination entre les différentes parties prenantes et une approche plus participative afin de garantir une coordination de la mise en œuvre;
- Et développer des outils et des cadres réglementaires afin de collecter et partager les données et les bonnes pratiques.

Prise en compte du carbone intrinsèque

Quels sont les types de règlementations sur le carbone intrinsèque?

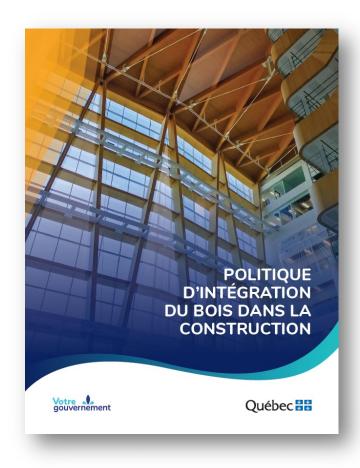
Déclaration des émissions de GES

Prise en compte du carbone intrinsèque

Survol des politiques existantes ailleurs dans le monde. Quelques exemples :

	Pays	Polit	ique	Entrée en vigueur
	France	Règlementaire	Seuils (bâtiments)	2021
	Belgique	Règlementaire	Déclaration (matériaux)	2014
	Danemark	Règlementaire	Déclaration (bâtiment)	2023
ь	Finlande	Volontaire	Déclaration (bâtiment)	2016
		Règlementaire	Seuils (bâtiments)	2025
_	Pays-Bas	Règlementaire	Déclaration (bâtiment)	2013

Et plusieurs autres ...


Prise en compte du carbone intrinsèque

Survol des politiques existantes en Amérique du Nord. Quelques exemples :

	État ou municipalité	Politique	Туре	Bâtiments ciblés
TORONTO	Toronto	Toronto Green Standard (TGS V4).	Règlementaire	 Bâtiments municipaux (seuils) Bâtiments privés (déclarations, seuils en 2025)
CITY OF VANCOUVER	Vancouver	Code du bâtiment de Vancouver (VBBL)	Volontaire (2019) Règlementaire (2023)	Re zonage (déclaration 2019)Gros bâtiments (seuils 2023)
CALIFORNIA REPUBLIC	Californie	Code du bâtiment	Règlementaire (2024)	Bâtiments commerciaux (seuils)Écoles (seuils)

Politique d'intégration du bois dans la construction

EXEMPLARITÉ GOUVERNEMENTALE

- Évaluation systématique de l'utilisation du bois dans les bâtiments financés en tout ou en partie par des fonds publics
- Analyse comparative des émissions de gaz à effet de serre (GES) pour les matériaux de structure

OBJECTIF 2 DOCUMENTER LA PERFORMANCE CARBONE DES BÂTIMENTS FINANCÉS PAR LE GOUVERNEMENT

- l'évaluation de la performance carbone soit réalisée à l'aide de Gestimat pour les bâtiments financés par le gouvernement
- le développement de l'outil Gestimat se poursuive
- des analyses soient effectuées pour déterminer des seuils maximaux d'émissions de GES pour les bâtiments financés par le gouvernement

OUTIL WEB GRATUIT

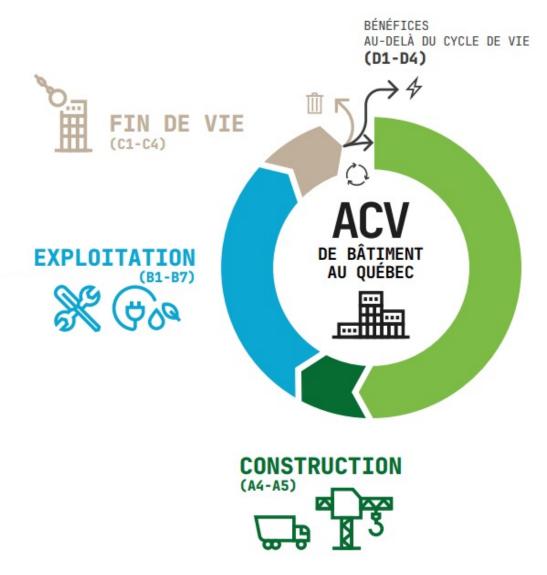
- ✓ Outil facile d'utilisation
- ✓ Disponible en français et en anglais
- ✓ Gratuit pour les utilisateurs privés et publics
- ✓ Régionalisé pour le Québec
- ✓ Génère des résultats transparents
- ✓ Compare des scénarios réalistes

GESTIMAT / GHGMAT

Outil web gratuit visant à faciliter l'estimation et la comparaison des émissions de GES liées à la fabrication des matériaux de structure et d'enveloppe pour différents scénarios de bâtiment

Acier

Bois massif


Ossature légère en bois

FACTEURS D'ÉMISSIONS DE GES

Facteurs d'émissions de GES du berceau à la porte (*Cradle-to-gate :* A1-A3)

- BD ICV Québec
- Ecoinvent
- DEP

✓ Faciliter la modélisation en phase d'avant-projet

Édifice à bureaux :

1 à 6 étages

Trames: 6m x 6m à 9m x 9m

Portée libre:

10, 15 et 20 m

BÂTIMENTS TYPES

École primaire – Classes 24 classes - 2 étages

Gymnase d'école primaire 18 x 24 m Gymnase d'écoles secondaires 24 x 40 m

BÂTIMENTS TYPES

Toiture de patinoire extérieure

Patinoire: 30 x 60 m

Photo: Stéphane Groleau

Photo: Le Natif Photographe

8 ministères et organismes exigent actuellement des évaluations GES en avant-projet et/ou de projets réalisés:

- Ministère des Ressources naturelles et des Forêts (MRNF)
- Société québécoise des infrastructures (SQI)
- Ministère des Affaires municipales et de l'Habitation (MAMH)
- Société d'habitation du Québec (SHQ)
- Ministère de l'Enseignement supérieur (MES)
- Ministère de l'Économie, de l'Innovation et de l'Énergie (MEIE)
- Société du Plan Nord (SPN)
- Société des établissements de plein air du Québec (SEPAQ)

3 autres ministères et organismes évaluent présentement l'intégration de cette exigence

AVANTAGES ÉCOLOGIQUES DU BOIS

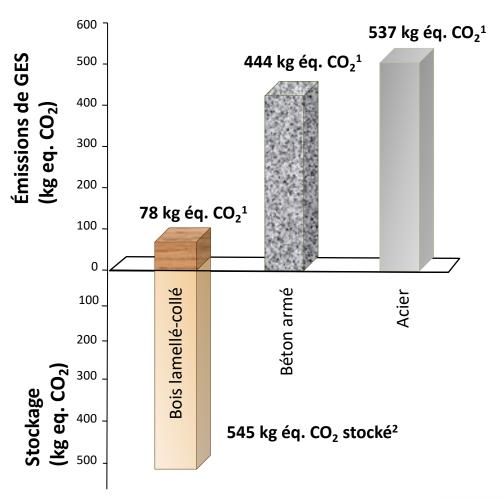
- Le bois est issu d'une ressource renouvelable et locale
- Il génère des retombées dans les régions ressources
- L'utilisation du bois permet de réduire notre empreinte environnementale et de lutter contre les changements climatiques

→ Stockage du carbone

Substitution de matériaux émetteurs de GES

→ Meilleure isolation thermique

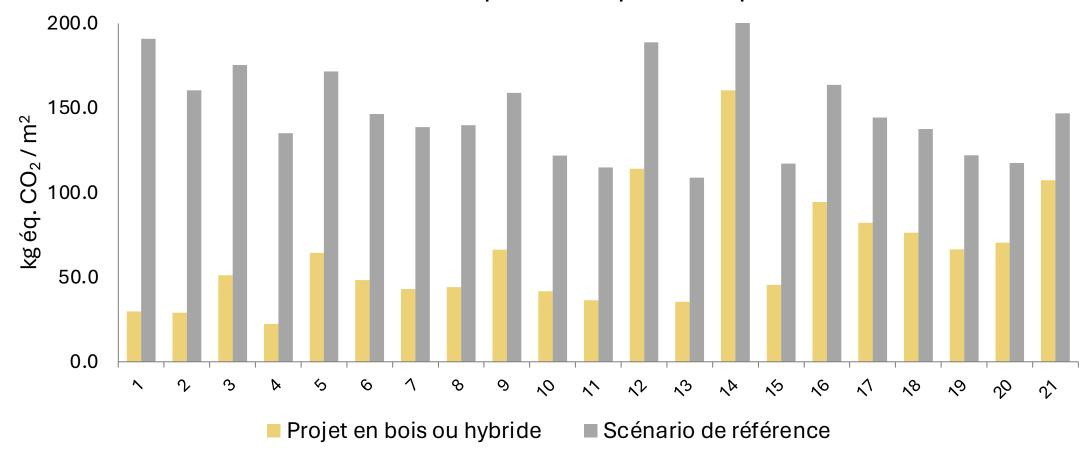
AVANTAGES ÉCOLOGIQUES DU BOIS


Analyse de cycle de vie d'une poutre

Portée : 7.3 m

Charge : 14.4 kN/m

- 1. Émissions des GES estimés à l'aide du logiciel Gestimat
- 2. Estimé en fonction du bois pour une masse de 500 kg/m³



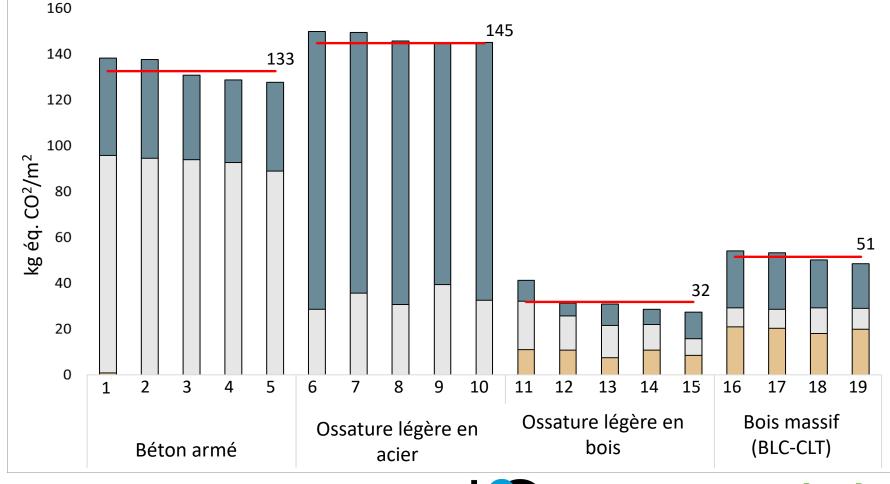
ÉVALUATIONS GES DE PROJETS RÉALISÉS

Programme PVT et PICB du MRNF

Émissions de GES par m² de plancher pour la structure

Étude de Benchmarking

Bâtiments multirésidentiels de 5-6 étages



Émissions de GES par m² de plancher pour la structure

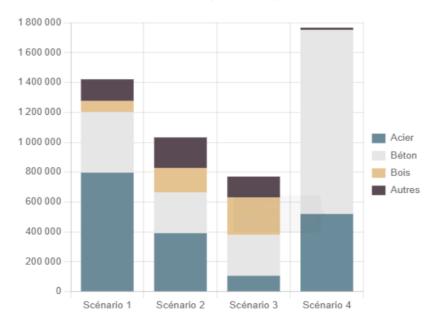
Government of Canada

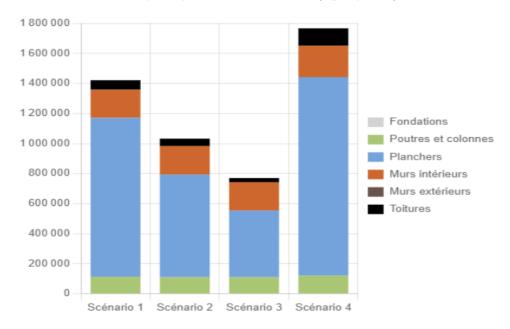
Gouvernement du Canada

COMPARAISON DES RÉSULTATS

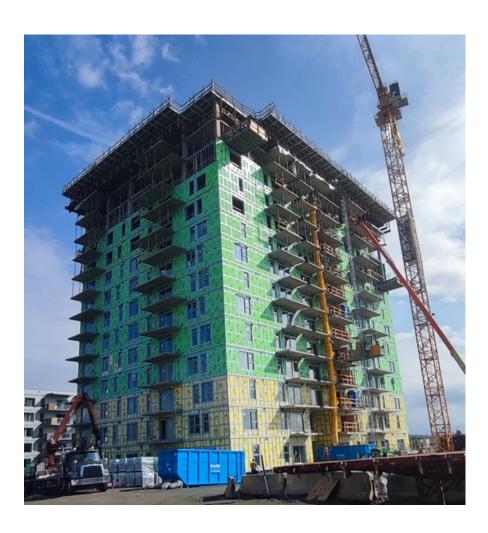
1. Structure BLC Planchers acier-béton

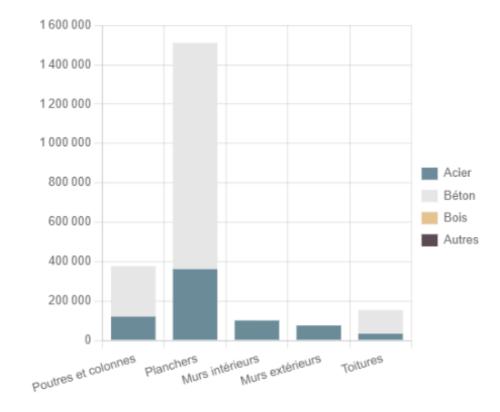
2. Structure BLC Planchers acier-CLT


3. Structure BLC Planchers CLT

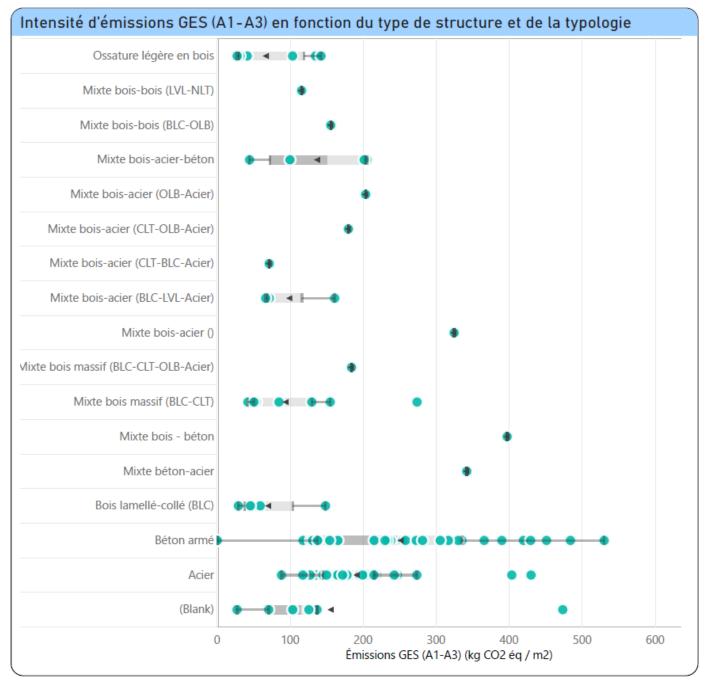

4. Structure béton

Émissions de GES par matériau (kg éq. CO₂)


Émissions de GES par système constructif (kg éq. CO₂)



ÉTUDE DE BÂTIMENTS DE 14 ÉTAGES


Émissions de GES de la structure : 139 kg éq. CO₂/m²

Logiciel utilisé	Typologie
☐ (Vide)	☐ (Vide)
☐ Athena	☐ Administratif
Gestimat	☐ Autres
☐ SimaPro	Bibliothèque
☐ SimaPro et Excel	☐ Bureaux, hôtels de ville, etc.
	☐ Centre de transport
	☐ Commercial
	☐ École primaire
	□ f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Type de structure	Moyenne de A1-A3/m2 ▼	Nombre de Type de structure	Écart type de A1-A3/m2
Mixte bois - béton	397,06	1	0,00
Mixte béton-acier	341,77	2	20,62
Mixte bois-acier ()	324,50	2	32,65
Béton armé	314,23	40	337,14
Mixte bois-acier-béton	284,51	6	300,26
Mixte bois-acier (OLB-Acier)	203,25	1	0,00
Acier	193,57	26	79,01
Mixte bois massif (BLC-CLT- OLB-Acier)	183,92	1	0,00
Mixte bois-acier (CLT-OLB- Acier)	179,63	1	0,00
	156,08		146,43
Mixte bois-bois (BLC-OLB)	155,44	1	0,00
Mixte bois-bois (LVL-NLT)	115,53	1	0,00
Mixte bois massif (BLC-CLT)	110,65	11	87,07
Mixte bois-acier (BLC-LVL-Acier)	99,44	3	43,43
Ossature légère en bois	74,85	9	70,38
Mixte bois-acier (CLT-BLC- Acier)	71,21	1	0,00
Total	218,00	110	236,44

IMPORTANCE DU CARBONE INTRINSÈQUE

